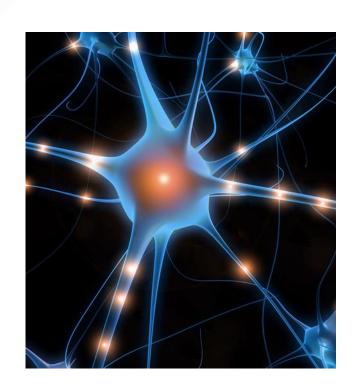


Micromessages:

Recognizing Nuance and Using Influence to Create Inclusive Engineering Environments


Teacher Summit / Women in STEM January 29, 2016

Shawna Fletcher, MS BME Director

Student Career Path

- Not a straight line!
- ❖ Future career may not exist ... yet.
- ❖ What do I want to do?
- What kinds of skills do I need?
- ❖ How do I get there?

National Data

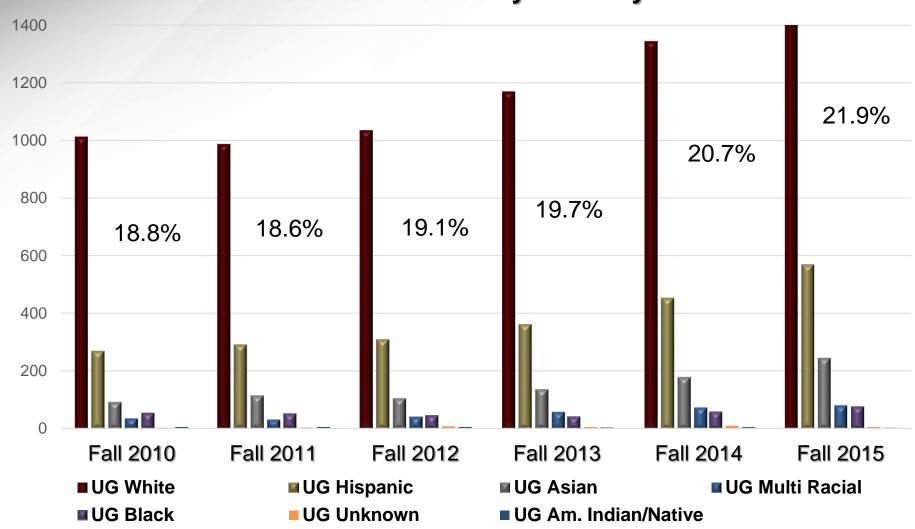
Population

Women are..... Everywhere - 50.8% of US Population*

Where women aren't

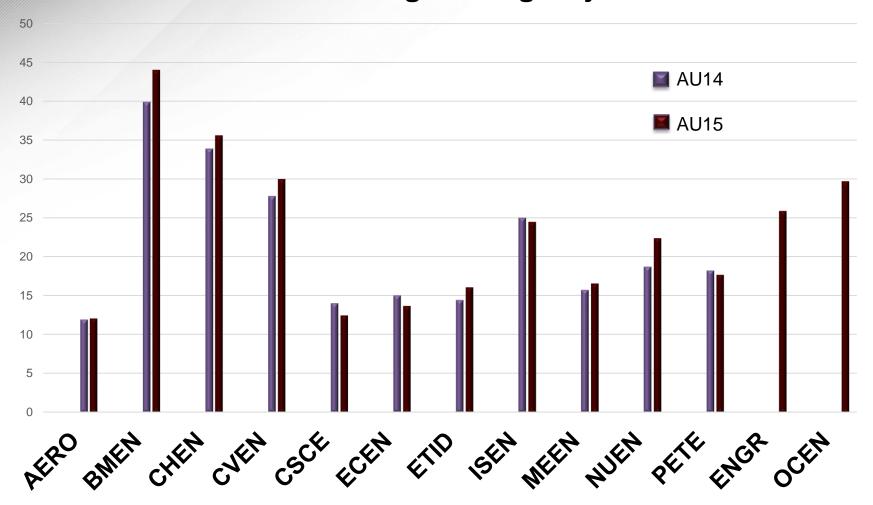
 represent 19.9% of all engineering undergraduate students in US

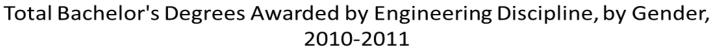
Engineering

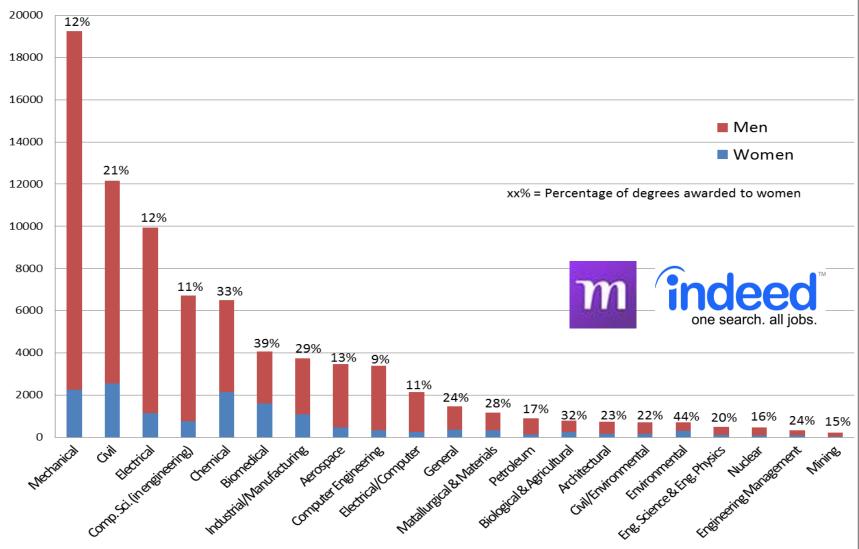

- women earn 18.7% of undergraduate degrees awarded in engineering***
 - Hispanic/African American women combined are 3% UG
 - 22.4% engineering PhD degrees awarded***

Workforce

up to 11% of practicing engineers?

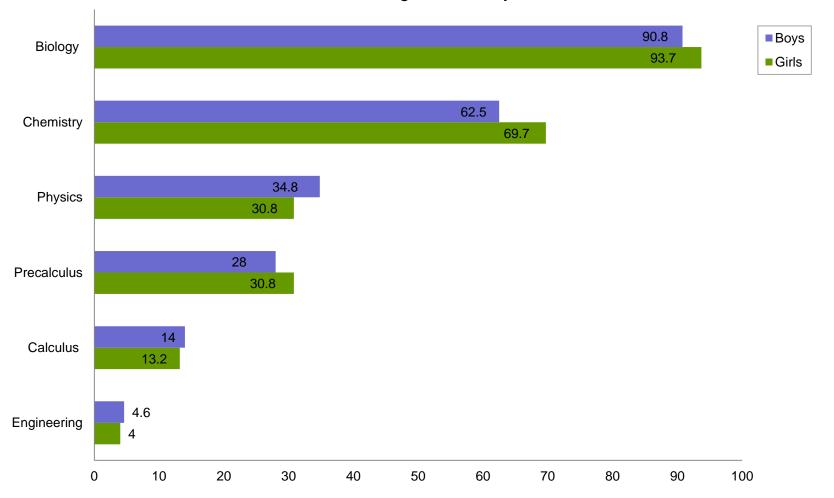

COE UG Women by Ethnicity


Source: DARS Data Dashboard, Certified Data 2015, College Station Campus only, accountability.tamu.edu



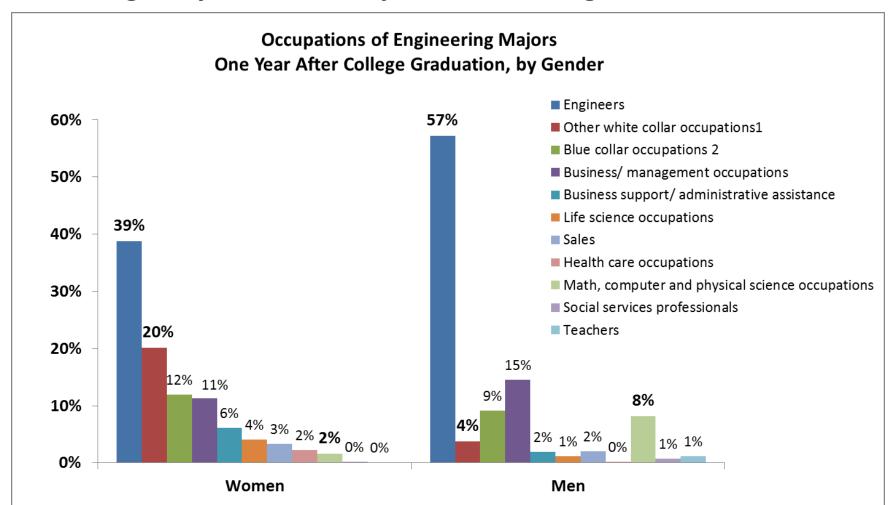
% Women UG in Engineering Majors @ TAMU

Source: DARS Data Dashboard, Certified Data 2015, College Station Campus only, accountability.tamu.edu



Source: Yoder, Brian L. (2012). *Engineering By the Numbers*. American Society for Engineering Education. http://www.asee.org/papers-and-publications/publications/college-profiles/2011-profile-engineering-statistics.pdf

High School girls are *more* likely to take biology, chemistry, and pre-calculus than boys... girls *less* likely to take physics!


Percentage of High School Graduates Who Took Selected Math and Science Courses in High School, by Gender, 2005

^{*}American Association of University Women (AAUW) 2010 report, Why So Few? Women in Science Technology, Engineering and Mathematics

^{*} National Center for Education Statistics (2007), Digest of Education Statistics.

Female Eng. Majors Less Likely to Work as Engineers after Graduation

¹Includes education, training, and library occupations (except teachers); arts, design, entertainment, sports, and media occupations; and miscellaneous other white collar occupations

Bold numbers indicate a significant gender difference.

Source: Author's analysis of U.S. Department of Education, National Center for Education Statistics, 2008-2009 Baccalaureate and Beyond Longitudal Study data

² includes drafters; food preparation and service occupations; farming, fishing, and forestry occupations; construction and extraction occupations; installation, maintenance, and repair occupations; production occupations; transportation and material moving occupations; military specific occupations; and miscellaneous other blue collar occupations.

Exercise #1

Micromessages in Data

Research-Based Strategies

What is a Micromessage?

"Micro-inequities" coined by Mary Rowe, PhD - MIT Researcher (1973)

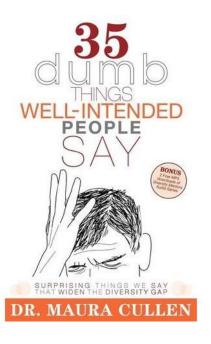
- subtle slights and snubs that devalue individuals
- instances of minute, subtle interactions
- perceived as imbalances to communicate who is in inner circle and not
- indirect offenses that can demoralize a person

How do Micromessages Manifest?

- visual representation
- body language (submissive)
- use of language ("guys")
- inclusion or exclusion (room layout / location)
- stereotypes (expected roles)

- disregard for ideas / taking ideas (teaming)
- interrupting before women finish
- dominating the conversation
- politics / networking / promotions

Implicit Bias – No one is immune!


Project Implicit https://implicit.harvard.edu/implicit/

Maura J. Cullen Quote

Think about everything you believe but do not believe everything you think!

Influence

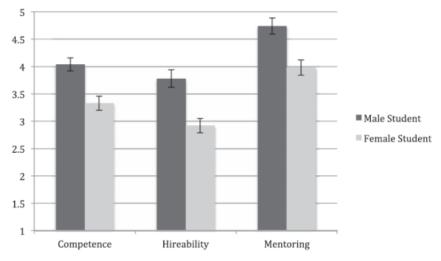
- Parents
- Siblings
- Education
- Culture

- Roles in Culture
- Experience
- Interactions
- Religion

- Pop Culture
- External Influences
- Media

Frame 1: Equip the Women

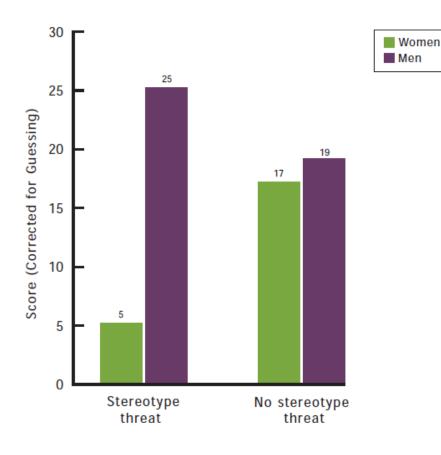
Frame 2: Create Equal Opportunity


Frame 3: Value Difference

Frame 4: Culture Change

Recognizing Implicit Bias

Yale Study: Corinne Moss-Racussin et al (2013)


- Identical resumes for fictitious students
- 50% John / 50% Jennifer
- Male and female researchers and faculty
- John vs. Juan

Salaries of Women in Science (As Compared to Men's Salaries) 13			
Occupation	Women's Salary as a Percent of Men's Salary	Women's Median Salary	Men's Median Salary
Mathematical sciences	75.7%	\$56,000	\$74,000
Biological /life sciences	85.2%	\$52,000	\$61,000
Computer and Information Sciences	88.8%	\$71,000	\$80,000
Physical sciences	76.9%	\$50,000	\$65,000
Social sciences	90.0%	\$63,000	\$70,000
Psychology	84.6%	\$55,000	\$65,000

About Stereotype Threat

Figure 15. Performance on a Challenging Math Test, by Stereotype Threat Condition and Gender

Group 1:

Told "Men perform better than women on this test"

Group 2:

Told "There's no gender differences in performance"

Source: Spencer et al., 1999, "Stereotype threat and women's math performance," Journal of Exper Psychology, 35(1), p. 13.

*participants were 28 men and 28 women from intro. psy. pool at University of MI. Requirement: at least one semester of calc. GRE math section given on computer.

Frame 1: Equip the Women

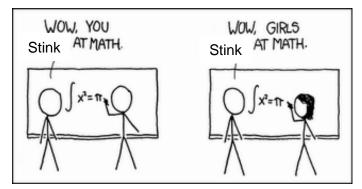
Frame 2: Create Equal Opportunity

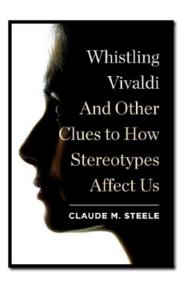
Frame 3: Value Difference

Frame 4: Culture Change

Recognizing Stereotype Threat

"being at risk of confirming a negative stereotype"


Research:


- Claude M. Steele
- Joshua Aronson

Intimidation Factors

- Don't know how to build anything
- Not familiar with procedures / process
- Women scrutinized for making mistakes / technical abilities

Frame 1: Equip the Women

Frame 2: Create Equal Opportunity

Frame 3: Value Difference

Frame 4: Culture Change

Recognizing Attribution Theory

"...attempt to explain the world and determine cause of an event or behavior"

Bernard Weiner (1935)

- locus of control
- stability
- · controllability

- fear of failure AND fear of success
- internalization detrimental to self confidence (ex: math scores)
 - identity introducing self

Female Attribution Trends

*luck or chance played a role

Thoughts:

- *I'm not good/smart enough
- *I need to be perfect

Success = External Failure = Internal / Personal

Male Attribution Trends

*I'm inherently smart, successful

Thoughts:
*out of my control
*teacher grades hard

Success = Internal

Failure = External / Not Personal


Women in Engineering Program #likeagirl

Frame 1: Equip the Women

Frame 2: Create Equal Opportunity

Frame 3: Value Difference

Frame 4: Culture Change

Engineer: Google It


Exercise #2

Discussing Societal Factors:

Macro-Messages

Confidence vs. Interest What comes first?

- FIRST® LEGO® League
 - http://www3.usfirst.org/
- Project Lead the Way (PLTW)
 - https://www.pltw.org/
- VEX Robotics Challenge
- Take STEM or CTE Courses
- AP Courses
 - Beware AP Math...
- Take Physics!!!!!
- More Math Please!!!!

WE Prepare Her!

FIX something!!

Hands-on

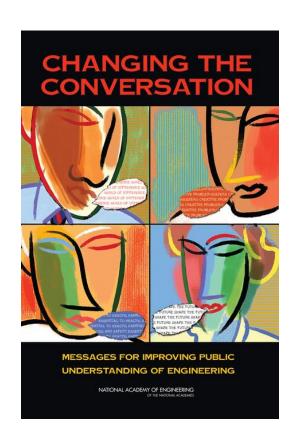
Get a job in High School!

Professional Practice

AggiE-Challenge

Aggies Invent Project Showcase

EIC Pop-Up
Classes


WE Aggie Research Leadership/Scholars Program

WE will send information about joining project teams throughout the semester. Keep looking for emails from weoutreach@tamu.edu!

Changing the Conversation

- Engineers make a world of difference
- Engineers are creative problem solvers
- Engineers help shape the future
- Engineering is essential to our health, happiness, and safety

Summary: Optimistic / Inspirational Message

Engineering is:

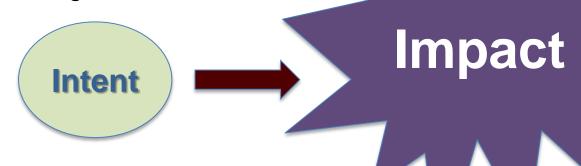
- infinite/limitless possibilities
- a creative endeavor
- concerned with human welfare
- emotionally satisfying

Visibility of Diverse Women

weoutreach@tamu.edu

Facebook: www.facebook.com/we.tamu

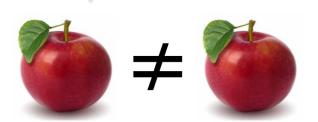
Twitter: @we_tamu #wetamu


Exercise #3

What are ways I can contribute to ensure a more inclusive environment?

Dr. Maura Cullen – 10 Core Concepts

#1 Intent vs. Impact


- turn to left / turn to right
- comment at meeting

#7 Consistent = Not Always Fair

· splitting the bill

[&]quot;fairness means treating people differently"

Dr. Maura Cullen - 10 Core Concepts

#8 Allies

- dominant, majority, advantaged
- challenge common practices / beliefs
- MAGNETS

#10 Bystander Behavior

bystander apathy / emergencies

knowing what is right is the easy part, doing what is right tests our courage ...

Components – must haves for young women!

- Gender neutral vs. "Pinkified"
- Context is important!

- Never be afraid to challenge girls, technically
 - remove hostile environment
- Encourage MISTAKES! Lots of them!
- Use mistakes as LEARNING opportunity, not belittling
- Personally invite women/underrepresented students to participate!

WE IDEAS

Innovate. Design. Engineer. Achieve for Society

WE Build Confidence & Interest

Resources for Teachers

NSF – ENGAGE Students in Engineering http://www.engageengineering.org/

- free / research-based resources
 - faculty-student interaction quick tips / talk to me
 - everyday examples
 - · spatial visualization skills

Carnegie Mellon – Recognizing and Addressing Cultural Variations in the Classroom (2005 report) http://www.cmu.edu/teaching/resources/PublicationsArchives/InternalReports/culturalvariations.pdf

international students

Women in Engineering Pro Active Network (WEPAN) www.wepan.org/?page=PDWebinars

webinars – active learning

American Society of Engineering Education (ASEE) www.asee.org

Exercise # 4

ME Student Article

Women in **E**ngineering Program

Shawna Fletcher

Director fletcher.234@tamu.edu

Danisha Stern

Program Specialist ms.d.stern@tamu.edu

Grad Assistants:

Judy Amanor-Boadu Benita Mordi

Student Workers:

Maritza Pancorbo Lauren Hale Dena Jijina Jackie Trevino

weoutreach@tamu.edu