

# **Physics Workshop Dr. Tatiana Erukhimova Department of Physics & Astronomy**

#### Senior Lecturer & Outreach Coordinator PhD in 1999 from Russian Academy of Sciences

Taught Physics classes for engineering and science majors since 2006

- 2014 Sigma Xi's Outstanding Science Communicator Award
- 2013 John E. Trott, Jr. Award in Student Recruiting
- 2012 Distinguished Achievement University-Level Award in Teaching
- 2015, 2009, Distinguished Achievement College-Level Award in Teaching
- SLATE awards: 2008, 2009, 2011



Atmospheric Thermodynamics Elementary Physics and Chemistry

> Gerald R. North Tatiana L. Erukhimova





# 72 Faculty

- 2 Nobel Laureates
- **3** National Academy of Science
- **12 Distinguished Professors**

Physics Faculty teach introductory physics classes P218 (Mechanics) and P208 (Electricity & Magnetism) to all engineering students

# Today's demonstrations

- can be made with household materials
  require little preparation
- •modest budget
- •can be easily shown in the classroom

I can't help but see physics everywhere-I go now. It's pretty neat.

From Physics 218 (Mechanics) students' evaluations

# **Balance of Forces and Torques Concept of Center of Mass**

 $\sum \vec{F}_{ext} = 0 \qquad \sum \vec{\tau}_{ext} = 0$ 

 $\vec{\tau} = \vec{r} \times \vec{F}$  or  $\tau = r_{\perp} \cdot F$ 

# Map of Texas











# Skyhooks

The skyhook alone won't balance on your finger, but when you put a belt on it, it does! This is all because adding the belt which curves under as it hangs actually moves the center of mass right under your finger!



# Nutcracker



# Inertia



If you pull the table cloth fast enough, the friction force between the cloth and the dinnerware will be very shortlived, so that the dinnerware will not have a chance to move before the force is gone.

Quantitatively, impulse  $F\Delta t$  of the friction force must be small.



# Atmospheric Pressure

# Force of Friction with Phone Books





(from Giancoli)

# Newton's Third Law with two spring scales



## Equal and opposite force



# **Conservation of Momentum**

- Basketball and Racquetball
- Skateboard with Leaf Blower
- Rotating Platform with Leaf Blower (angular momentum)

# More with a Leaf Blower! Bernoulli's principle

 $p + \rho g h + \frac{1}{2} \rho v^2 = Const$ 

h = ConstVelocity Pressure

- Leaf Blower and Flying Ball
- Leaf Blower, Broom, and Toilet Paper



#### Eagle photo/Stuart Villanueva

# The Frisbee as an Airfoil

• According to Bernoulli's Eq,

 $p + \rho g h + \frac{1}{2} \rho v^2 = \text{Constant}$ 

- The curved upper surface of the Frisbee forces the air above it to increase its velocity as compared with the air flowing underneath – much like an airplane wing
- Because *pgh* is the same on the top and bottom of the Frisbee, the increased velocity of the air above the Frisbee must correspond to a lower air pressure
- The lower air pressure above the Frisbee provides a lift force that helps counteract gravity.



Airplane wing

## **Rotational Motion**



## **Rotation of Rigid Bodies**

- Cookie Cans with Magnets on Inclined Plane (moment of inertia)
- Rotating Platform with Weights and a Wheel (angular momentum)
- Eggs (hard-boiled and raw) on Inclined Plane



#### Angular momentum



#### **Compare with momentum:**







L before = L after

$$I_a \omega_a = I_b \omega_b$$



What do freshman students mostly struggle with when they enter physics class?

- **1. Vectors, vectors, and vectors!** How to work with vectors by means of <u>components</u> basic trigonometry is inevitable.
- **2. Derive a solution in a symbolic form** rather than "plug and chug" approach

## **Projectile Motion**

$$x(t) = v_x(0)t + x(0) \qquad y(t) = \frac{1}{2}a_yt^2 + v_y(0)t + y(0)$$
  

$$v_x(t) = v_x(0) \qquad v_y(t) = a_yt + v_y(0)$$
  

$$v_y^2(t_2) - v_y^2(t_1) = 2a_y(y(t_2) - y(t_1))$$



How long does it take for the ball to reach the surface?



## **Projectile Motion**

A cannon at the origin points up at an angle  $\theta$ with the x axis. A shell is fired which leaves the barrel with a velocity of magnitude  $V_{\rm m}$ . How long is the shell in the air before it lands?

$$y \uparrow t_{1} \qquad t_{2} \qquad V_{x}(t) = V_{m} \cos \theta$$

$$V_{y}(t) = -gt + V_{m} \sin \theta$$

$$V_{y}(t) = -gt + V_{m} \sin \theta$$

$$V_{y}(t) = 0; \quad -gt_{1} + V_{m} \sin \theta = 0$$

$$t_{1} = \frac{V_{m} \sin \theta}{g}$$

$$t_{2} = ? \quad y(t_{2}) = 0$$

$$y(t) = -\frac{1}{2}gt^{2} + V_{m} \sin \theta t$$

$$-\frac{1}{2}gt^{2} + V_{m} \sin \theta t_{2} = 0;$$

$$t_{2}(-\frac{1}{2}gt_{2} + V_{m} \sin \theta) = 0$$

$$t_{2} = 2\frac{V_{m} \sin \theta}{g} = 2t_{1}$$

## Falling with air resistance





## **Terminal Velocity with Coffee Filters**

 $mg - F_r = ma$ where  $F_r$  is the resistance force.  $a = g - \frac{F_r}{m}$ 

- 1. A penny and a quarter dropped from a ladder land at the same time (air resistance is negligible).
- 2. A coin dropped in a coffee filter from a ladder lands later than a coin without coffee filter (the terminal velocity is smaller for larger cross-section area).
- 3. A quarter dropped in a coffee filter will land faster than a penny in a coffee filter (the terminal velocity is larger for larger mass)
- 4. Two identical coins dropped in coffee filters of different diameters land at different times (the terminal velocity is smaller for larger cross-section area).

# Resistance force: $F_r = \gamma A v^2$

A – area of the projectile

For a spherical projectile in air at STP:  $\gamma = 0.25 \text{ N} \times \text{s}^2/\text{m}^4$ 

## Terminal velocity:

$$a = g - \frac{F_r}{m} = 0$$
$$F_r = mg$$
$$\gamma A v^2 = mg$$

$$v_T = \sqrt{\frac{mg}{\gamma A}}$$

A 70-kg man with a parachute:  $v_T \sim 5$  m/s A 70-kg man without a parachute:  $v_T \sim 70$  m/s



$$F = (\rho_{fluid} - \rho_{object})Vg$$
$$F = (\rho_{surrounding gas} - \rho_{object})Vg$$

When a body is completely or partially immersed in a fluid, the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body.



# **Static electricity**



### Can you make a light bulb work with a battery and a wire?

#### "Minds of Our Own" by Dr. Matthew H. Schneps and Dr. Philip M. Sadler Harvard-Smithsonian



How can students graduate from prestigious schools like Harvard or MIT and not know even some of the most basic ideas in science taught in grade school?

# Faraday's Law of Induction

•A time varying magnetic flux through a circuit will induce an EMF (voltage) in the circuit.

• Varying magnetic field is created as a bar magnet passes through the coil.



$$\oint \vec{E} \cdot d\vec{r} = -\frac{d\Phi_B}{dt}$$

## Lenz's Law

Which way will the current go?

Lenz's Law: if a current is induced by some change, the direction of the current is such that it opposes the change.

$$\oint \vec{E} \cdot d\vec{r} = \Theta \frac{d\Phi_B}{dt}$$

Experiment with a magnet falling in an aluminum pipe



## Make your own MOTOR!

All you need is a battery, a nail, a small magnet, and a wire (foil works better)  $\vec{1}$ 



http://en.wikipedia.org/wiki/Homopolar\_motor



# Physics & Engineering Festival April 8 - 9



## http://physicsfestival.tamu.edu/

## See you there!